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The linear stability of a rotating contained perfect gas flowing axially is shown to 
depend on a ' centrifugal Richardson number ' when the ratio of the axial flow to 
the peripheral velocity, and the ratio of the peripheral velocity to the sound 
speed are both small. The Boussinesq approximation is not made. In  the limit of 
infinite sound speed the known incompressible result (unstable, Pedley 1968) is 
reproduced. Comparison with computational results indicates that the asymptotic 
theory is pessimistic. 

1. Introduction 
The stability of shearing flow in a rotating gas is relevant to numerous geo- 

physical and astrophysical problems concerning planetary and stellar atmo- 
spheres. These problems have provided a fruitful field for the application of the 
Boussinesq equations with numerous additional features, such as an independent 
stratification. Similar problems are also encountered in engineering applications 
such as the flow in compressors and turbines. 

In this paper I have isolated a simple problem to which one can apply the full 
compressible equations of motion and obtain a linear stability criterion. I have 
chosen gas flow in a pipe which is characterized by an azimuthal flow which is 
almost a solid-body rotation and an axial flow small compared with the rotational 
velocity. The conclusions apply as well to a rotating annulus. This simple case is 
in the spirit of, among others, Howard & Gupta (1962), Pedley (1968, 1969) and 
Maslowe (1 974). 

The compressible problem is complicated by the difficulty of obtaining an 
exact solution around which to linearize. This problem will be avoided here by 
supposing from the start that the gas is strictly inviscid. This hypothesis is 
justified by noting that the inviscid stability criterion so obtained is less con- 
straining for a slightly stratified fluid than the viscous criterion given by Pedley 
(1969), so that flows which are unstable according to the inviscid criterion cannot 
be stabilized by reasonable viscosities. This argument holds for Stewartson layers 
within the range of parameters considered in this paper. I shall discuss this point 
further in 9 4. 

The eigenvalue problem obtained by linearizing about such a steady motion 
and seeking solutions which behave like eiut appears to be beyond the scope of 
analysis. Some computer results exist (Plobeck 1974), however the essential 
physics are likely to be discovered analytically. Therefore I have studied an 
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asymptotic problem for which both the ratio of the axial velocity to the rotational 
velocity, and the ratio of the rotational velocity to the sound speed are small. 
I have restricted the class of infinitesimal disturbances to those which have a small 
ratio of axial to azimuthal wavenumber. With the exception of the ‘Mach 
number’ criterion these are precisely the conditions imposed by Pedley (1968). 
The results obtained below contain Pedley’s result as a special case. 

No assumptions, other than the vanishing of viscosity, are made about the 
physical properties of the (perfect) gas. Because of the special character of 
adiabatic and isothermal states I have chosen to impose a one-parameter family 
of basic temperature states varying continuously between the two extremes. This 
arbitrariness is consistent with the arbitrariness introduced in the velocity 
profiles. 

The primary result of this paper is that the flow is unstable to the disturbances 
considered if an asymptotic ‘ centrifugal Richardson number ’ is anywhere less 
than 4. The unstable eigenfunctions appear to be confined to the regions in which 
this criterion is violated, but no attempt has been made to follow the development 
of the flow to finite amplitude. Only in the case of Poiseuille flow, for which this 
Richardson number is a constant, is it possible to give the eigenfunction explicitly. 

The usual Richardson number can be written as 

Ri = g, Vplp Wt2,  (1.1) 

where g is the gravity vector, p the density and W’ the derivative of the shear 
velocity in the direction of gravity. For the centrifugal compressible case, g can 
be replaced by the centripetal acceIeration and p-’p’ by 

where w is the dimensionless radial co-ordinate. 
The asymptotic expression for this Richardson number may be written as 

Ri, = Q2w2(1 -a) (y-  l ) , ~ ~ / w 1 ~ ,  (1.3) 

where Q, a, y, ,u and W are the rate of basic rotation, the ratio of the temperature 
gradient in the gas to the adiabatic temperature gradient, the ratio of the specific 
heats, the ratio of the peripheral rotation rate to the sound speed at the wall and 
the local axial velocity, respectively. The prime denotes the radial derivative. 
As will become clear below, Ri, d Ri throughout the gas. Equality holds for the 
isothermal (a = 0 )  case. 

If one supposes that shearing rates are limited by Stewartson-layer thicknesses 
then one can derive the dependence of Ri, on Q for fixed axial velocities and for 
fixed mass fluxes: Ri,( W )  cc a*, Ri,(a) cc a%. (1.4) 

Finally it should be noted that the computer results indicate that actual flows 
are more stable than the asymptotic theory indicates. 

The plan of the paper is as follows. Section 2 describes a general basic state and 
the associated perturbation equations. Section 3 is the heart of the paper. There 
the asymptotic stability criterion is derived. Section 4 compares the asymptotic 
results with some computer results for Poiseuille flow and gives a brief discussion. 
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2. Formulation 
This investigation is concerned with flow in a pipe of radius a and infinite 

length rotating about its symmetry axis with angular velocity SZ. The gas is 
assumed to be a perfect gas and perfectly inviscid. Its motion is governed by 
conservation of momentum, 

p‘ DV‘lDt‘ + VP’ = 0,  (2.1) 

of mass, ap‘latl + v . (p’v’) = 0, (2.2) 

and of entropy, DX‘lDt’ = 0, (2.3) 

P’ = P(p’, X’), 

and an equation of state, which may be written symbolically in terms of pressure, 
density and entropy, 

as well as in the familiar perfect gas law form, 

(2.4) 

P’ = Rp’T‘. (2.5) 

Replacement of the full equation of conservation of internal energy by (2.3) is 
consistent with the neglect of viscosity in (2.1). The symbols V’, p‘, P‘, S‘, T‘, R 
and t’ denote velocity, density, pressure, entropy, temperature, the gas constant 
and time, respectively. 

It is convenient to define a cylindrical co-ordinate system (w‘, 0, 2’) in which 
8 = Q2 and the wall of the pipe is m’ = a. The reader may verify that 

v; = vt(w’) 6 + Wtfw‘) 1 (2 .6)  

and PA, p;, S; and T; functions of w‘ alone will satisfy (2.1)-(2.5). One is at  liberty 
to specify V’(w’), W’(w’) and one of the thermodynamic variables. 

Two special thermodynamic conditions are of more than passing interest: 
adiabatic and isothermal. They can both be included in the model by defining the 
parameter a: 

One can find the adiabatic temperature gradient by differentiating (2.4) and (2.5) 
with respect to w’ and setting the entropy gradient to zero. By substitution from 
12.1) one finds that 

where y is the ratio of specific heats. 
Combination of (2.7) and (2.8) suffices to prescribe the temperature profile, and 

one can write the basic solution, actually a one-parameter family of basic 
solutions, as 

Vi(W’) = V ( d )  i + W’(m’) 1, 
P i W )  = PWC? 
P ~ ( w ’ )  = RTWpwC2(q+l), 
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where the subscript w denotes evaluation a t  the wall and 

I n  the isothermal (a --f 0)  limit, q + cc and the density and 
exponential functions, viz. 

It is convenient to non-dimensionalize the original system 
scheme r' = ar, t' = n-It, V' = Qav, 

P' = p,Q2a2P, p' = pwp*, T' = T,T. 

The non-dimensional version of the basic solution is then 
A 

vo = V ( a )  a + W f a )  2, 
po = C2q, Po = (yp2)-1C2(q+1), To = C2, 

where p2 = Q2u2/yRT, is the square of a Mach number and 

(2.10) 

pressure become 

(2.11) 

according to the 

(2.12) 

(2.13) 

(2.14) 

is the fully non-dimensional form of the quantity defined by (2.10). 

(2.4) is required below and can be written, using (2.3), as 
Equations (2.1)-(2.3) are unchanged in form. The convective derivative of 

Equation (2 .5 )  is transformed to  

P = (?p2)-lpT (2.16) 

To form the equations for linear stability the basic solution is perturbed 
according to 

(2.17) 

The latter two quantities are decoupled from the first three and need not be 
considered further. They can be calculated a posteriori if desired. 

T = T o + @ ,  s = s,+s. = 

v = v,+u, p* = P o f P ,  

Solutions for u, p and Q proportional to 

exp i[at + m@ + kx] (2.18) 

will be sought. With this Ansatz the first-order (in u, p and P )  form of (2.15) 
becomes an algebraic equation which one can use to  eliminate p in terms of u 
and Q: (2.19) 
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where A(w) = IT + Vm/w + Wk and a prime henceforth denotes a/aw. After some 
algebra one arrives a t  

(2.20) 

Combining (2.1), (2.2)) (2.13)) (2.17) and (2.20) leads to the four governing equa- 
tions for this problem, viz. 

p2 p2 v2 i A - Q + - - ~ + v . u  = 0. 
c2 C2m 

(2.21 b )  

The boundary conditions for this set are that u( 1) = 0 and that everything be 
suitably well behaved a t  the origin. 

Below it will be necessary to restrict V(m):  

V ( a )  = w + &V(W) .  (2.22) 

(2.23) 
SV 6V 

This makes A(w) = o-+m+-m+ Wk = A+-m+ W k .  
a W 

3. Asymptotic stability 
The eigenvalue problem represented by (2.21), (2.22) and the boundary condi- 

tions seems analytically intractable. Plobeck (1974) has obtained some numerical 
results using Poiseuille flow with SV 3 0 by eliminating everything but the radial 
velocity from the set (2.21) and ‘shooting’: numerically integrating the resulting 
second-order ordinary differential equation for different values of cr until 
the boundary conditions are satisfied. Analytic results can be obtained 
asymptotically. 

I introduce a small parameter e in order to make the asymptotic analysis easier 
to follow. The quantities required to be small are then supposed to be propor- 
tional to e, viz. 

,u =,u,e, k = k,me, W = W*e, 6v = 6v*e2, (3.1) 

where the starred qmntities are O( 1) .  The first derivative of W, must also be O( 1) .  
Having made the substitution (3.1) one supposes that the solution (u, &) and 

the eigenvalue h = u + m are expandable in power of e: 

w = UO+€U1+ ..., 
Q = QO+eQl+ ..., 
h = €Al+ ... . 

Substitution of (3.1) and (3.2) then leads to a series of problems at  different orders 
in e. (It should be remarked in passing that this procedure is equivalent to 
reducing (2.1) to a single equation for Q, supposing h = h,e and making the 
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hypothesis (3.1): the procedure followed by Pedley (1968). I have used this 
alternative procedure because I find it clearer.) 

The first such problem is 
- 2 ~ 0  + Q A  = 0,) 

i 2u, + (im/w) Qo = 0, 

(wu,)’ + imv, = 0, 

uo(l) = 0. 
It has an infinity of solutions: 

(3.3) 

uo = ( -im/2w) Q,, v, = +&A, (3.4) 

subject only to the conditions that Qo( l )  = 0 and that Q, and QA be sufficiently 
well behaved at  the origin. 

The O(E)  equations lead to a more interesting result. These are written as 

1 2u, + ih, vo + (im/w) Q,  = 0,  

W i  u, + ih, w, + ik, mQ, = 0, 

(mu,)’ + imv, + ik,mww, = 0. 

(3.5) 

These equations may be reduced by substituting for uo and vo from (3.4) and then 
eliminating u,, v1 and w, in favour of Qo and Q1 using the first three equations. 
When this result is substituted into the last equation, the terms involving Q, 
are identically zero and one is left with a single equation for Q,, vie. 

(3.6) 

subject to the boundedness condition at  the origin and Qo(l) = 0. The function 
g(w), which controls the behaviour of the solutions to (3.6), is given by 

g(w) = 21e,m2(21c,w- W~)+m2(y-1)(1-a)pCQwil .  (3.7) 

Equation (3.6) and its boundary conditions form a classical Sturm-Liouville 
problem for the eigenvalue [ = hz2, and the following may be inferred from 
classical Sturm-Liouville theory (cf. Ince 1956, $10.61). 

(i) If g(w) > 0 throughout the interval, all the eigenvalues Cn are positive, the 
corresponding A, are real and the system is stable. 

(ii) If g(w) < 0 throughout the interval all the eigenvalues En are negative, the 
corresponding A, are imaginary and the system is unstable. 

(iii) If g(w) changes sign in the interval there are two sets of eigenvalues {En}+ 
and {En}-. One of these contains positive and the other negative eigenvalues; 
there are both real and imaginary A, and the system is unstable. 

From these it is clear that a necessary and sufficient condition for stability is 
that g(w) > 0 throughout the region. This can be written as 

l WSl < { 2 I ~ * l + ( 1 - ~ ) ( 7 - l ) ~ u $ / 2 I k * I > ~ .  (3.8) 
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The second term on the right-hand side of (3.8) is new; the first term is Pedley’s 
incompressible result. The appearance of this second term means that the right- 
hand side has a minimum at 

k* = *p*(y - l)t (1  -a)&, (3.9) 

so that asymptotic stability is assured if 

Iw;l < 2(y- l )+( l -a)+p*W. (3.10) 

That (3.10) represents the centrifugal Richardson number criterion asymptoti- 
cally is seen by squaring (3.10), rearranging and redimensionalizing to obtain 

4 < (7 - 1) (1  -a) !22~2p2/W‘2 = Ri,. (3.11) 

Since (3.12) 
1 dpo - a(y - 1) pU2Q2w 

Po dw C2 

and C2 N 1 ,  criterion (3.10) involves the centrifugal Richardson number defined 
in 9 1 consistent with the asymptotic approximation. One notes also that Ri, 
vanishes when a = 1 (an adiabatic lapse rate). Because G2 6 1 throughout the 
gas Ri, 6 Ri. 

Except for the case of Poiseuille flow, discussed below, the eigenfunctions 
cannot be found by the methods used above. However one can say something 
about their properties. If (3.6) is multiplied by Go, the complex conjugate of Qo, 
and integrated between zero and unity, one can obtain an expression for A$ : 

In  this expression the angular brackets denote the integration. The reader will 
note that every term but the second in the numerator is positive definite. Sturm- 
Liouville theory ensures that A$ < 0 for sufficiently large I W & \ ;  equation (3.12) 
shows that the eigenfunctions must be concentrated in the region(s) of maximum 
shear. 

Poiseuille flow is a special case: Ri* is constant. If 

w = W ( l - w 2 )  (3.14) 

then the criterion (3.10) reduces to 

w < (y-l)ql-a)*p. (3.15) 

The function g(w) is then a linear function of w and (3.6) reduces to Bessel’s 
equation, so that 

and A*, = [4k*m2(k*-W)+m2(y-  1)  (1--4p%1*/jmn, (3.17) 

wherej,,, is the nth zero of the mth-order Bessel function. 
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FICUFLE 1. Comparison of computed critical velocities for isothermal Poiseuille 
flow with the asymptotic theory: y = 1.09, rn = - 1, p = 0.2. 

4. Discussion 
It is informative to compare an asymptotic solution such as that developed 

above with real solutions beyond the asymptotic range. Unfortunately I have 
been unable to uncover any applicable experimental results and can only compare 
these results with the numerical results of Plobeck (1974), valid for Poiseuille flow. 
Figures 1 and 2 show the theoretical curve %f'" us. k obtained by replacing the 
inequality in (3.8) by equality and replacing W by the form for Poiseuille flow 
defined by (3.14). The points on figure 1 were found by L. Hultgrenusing Plobeck's 
computer program; those on figures 2(a)  and ( b )  are taken from Plobeck (1974). 

Figure 1 is truly asymptotic, and the agreement is as it should be. Figures 2 (a)  
and (b )  are beyond the asymptotic range. One notes that the general shape of the 
curve is reproduced by the data points, and that the computer calculations 
indicate that the actual flow is more stable than the asymptotic analysis suggests. 

The question of the realizability of the basic flow has been left somewhat open. 
Poiseuille flow is the only simple realizable flow meeting the restrictions set on 
Sv. However, if the viscosity is sufficiently small and the pipe sufficiently long 
(to suppress x dependence and radial motions), then an axial velocity O(e) will 
induce, by nonlinear interaction, a Sv which is, as required, O(e2).  
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FIGURE 2. Stability beyond the asymptotic range: y = 1.09, ,u = 1. 
(a) m = - 1. (b )  m = - 2. Data from Plobeck (1974). 

More can be said about the radial dependence of W .  When ,u < 1 the scale 
height will be large compared with local measures of free shear layers and one can 
suppose that these will be O(E*), where E is the Ekman number, so that 
W’ z O(WE-*) or smaller. Thus, if is a characteristic dimensionless axial 
velocity, (3.10) can be amended to read 

FV < 2(y-1)4(1-a)B,umE+. (4.1) 

Under these circumstances the Reynolds number criterion given by Pedley 
(1969) can be expected to hold. His criterion is that the flow is stable if the 
Reynolds number is less than 82.9. I n  the notation of this paper, in a shear layer, 

(QL) W(E+L)/v < 82.9, (4.2) 

or w < 82.9Ef. (4.3) 

82*9E*/2(y- l ) t ( l  -CY,)~,L~JE Q-b*. (4.4) 

The ratio of maximum permissible velocities according to the two criteria is then 
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For sufficiently small viscosity the stability is truly determined by the 
stratification. 

The fact that the stability criterion deduced above is a Richardson number 
criterion leads one to ask two questions. First, is the criterion correct away from 
its asymptotic region? Second, is this also an absolute stability bound in that no 
subcritical stabilities are possible ? Comparison of my results with the numerical 
integrations of the full linear stability equation (Plobeck 1974) indicates that the 
answer to the first question remains open. I have spent a little time considering 
the question of absolute stability and have so far been unable to find even as much 
as an energy theorem of the sort found by Serrin (1959). 

I thank L.Hultgren for figure I. Much of the work was done while I was at 
M.I.T. and I thank L. N. Howard, M. T. Landahl and W. V. R. Malkus for helpful 
comments. 
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